WETPOND SIZING WORKSHEET

2005 Surface Water Design Manual Sizing Method

Project na	me:								
METHOD	S OF AN	ALYSIS (see	e p. 6-68	3)					
Step 1) De	termine v	olume factor	<u>f.</u>						
Basic size? f = 3 Consul					Consult W	WQ requirements(Section1.2.8)			
						to determine if basic or large size needed			
Step 2) De	<u>termine r</u>	<u>ainfall <i>R</i> for i</u>	nean an	nual	storm.				
Rainfall (R)					(feet)	Required from Figure 6.4.1.A			
Step 3) Calculate runoff from mean annual					- ` '				
		- 0.10A _{tf +} 0.01 A							
	A _i =	tributary area of impervious surface				(sf)	Determine now		
	$A_{tq} =$	tributary area o	=			_ (sf)	Determine now		
	$A_{tf} =$	tributary area of till forest				(sf)	Determine now		
	$A_{og} =$	tributary area o			s	_ (sf)	Determine now		
	R =	rainfall from me		· ·		_ (ft)	From Step 2		
	$V_r =$	volume of runo	ff from			_` ′	•		
		mean annual storm_							
Sten 4) Ca	lculate w	etpool volum	Δ						
$V_b = f V_r$	iculate w	<u>ctpoor voidiii</u>	<u> </u>						
10 . 1	f =	Volume factor				(unitless)	From Step 1		
	V _r =	volume runoff,	mean anr	nual s	torm	(cf)	From Step 3		
	V _b =	Volume of the				(cf)	2 2 3 4		
Sten 5) De	termine v	vetpool dime	neione						
			1310113						
a) Dotomin	a) Determine geometry of first cell Volume in first cell					(cf)	25-35% of total		
	Depth h 1st cell (minus sed. stor.)			•		_ (ft)	See Section 6.4.1.2		
	Determine horizontal xs area at mid-depth using Amid = V1st/h								
		Amio		•	J	(sf)			
		Mid-	width			(ft)			
		Mid-	ength	•		(ft)			
	Determine horizontal xs area at surface								
	Z = Side slope length:(H):			_(H):	1(V)	_(ft)	3:1 recommended		
		$2(h/2 \times Z) =$				_ (ft)			
Find top dimensions by adjusting for shape geometrics									
Top width					(ft)				
		Тор	length	•		(ft)			
$A_{top} =$					(sf)				

b)	Determine geometry of second cell		
-,	Volume in second cell	(cf)	Must be 65 - 75%
	Depth h of 2nd cell	(ft)	See Section 6.4.1.2
	Determine horizontal xs area at mid-dep	```	
	A_mid	(sf)	
	Mid-width	(ft)	
	Mid-length	(ft)	Used to check L:W
	Determine xs-area at surface		
	Z = Side slope length:(H):	1(V) (ft)	3:1 recommended
	$2(h/2 \times Z) =$	(ft)	
	Top width	(ft)	
	T _{top} length	(ft)	
	$A_{top} =$	(sf)	
	Adjust cell 2 width to match cell 1	(ft)	
	Adjust cell 2 length using A _{top}	(ft)	
	Geometry check: overall pond L: W at mid depth	= 3 · 1	
	Pond width (mid-depth)	(ft)	
	Cell 1 length (mid-depth)	(ft)	
	Cell 2 length (mid-depth)	(ft)	
	Pond length (mid-depth) = cell 1 + 2	(ft)	
	Lmid : Wmid =		_
St	ep 6) Design rest of pond (see Criteria p. 6-	<u>-72)</u>	
	Internal berm		
	Inlet & Outlet		
	Primary overflow		
	Access		
	Other Design Details (Sections 6.2.2, p. 6-18,	6.2.3, p. 20 and 6.2	2.4, p. 6-22)
	Sequence of Facilities		
	Setbacks		
	Sideslopes, fencing, embankment		
	Liners		
T	otal wetland surface area estimate		
	Surface area 1st cell + 2nd cell + area for	or internal berm + area	for access ramp
	=		
	=		
	= sf		

Plus setbacks, access roads, 100-yr conveyance